Obesity worsens mitochondrial quality control and does not protect against skeletal muscle wasting in murine cancer cachexia

Author:

Cardaci Thomas D.1ORCID,VanderVeen Brandon N.1,Bullard Brooke M.1,McDonald Sierra J.1,Unger Christian A.1,Enos Reilly T.1,Fan Daping2,Velázquez Kandy T.1,Frizzell Norma3,Spangenburg Espen E.45,Murphy E. Angela1

Affiliation:

1. Department of Pathology, Microbiology, and Immunology University of South Carolina School of Medicine Columbia South Carolina USA

2. Department of Cell Biology and Anatomy University of South Carolina School of Medicine Columbia South Carolina USA

3. Department of Pharmacology, Physiology and Neuroscience University of South Carolina School of Medicine Columbia South Carolina USA

4. Department of Physiology East Carolina University Greenville North Carolina USA

5. Diabetes and Obesity Institute, Brody School of Medicine East Carolina University Greenville North Carolina USA

Abstract

AbstractBackgroundMore than 650 million people are obese (BMI > 30) worldwide, which increases their risk for several metabolic diseases and cancer. While cachexia and obesity are at opposite ends of the weight spectrum, leading many to suggest a protective effect of obesity against cachexia, mechanistic support for obesity's benefit is lacking. Given that obesity and cachexia are both accompanied by metabolic dysregulation, we sought to investigate the impact of obesity on skeletal muscle mass loss and mitochondrial dysfunction in murine cancer cachexia.MethodsMale C57BL/6 mice were given a purified high fat or standard diet for 16 weeks before being implanted with 106 Lewis lung carcinoma (LLC) cells. Mice were monitored for 25 days, and hindlimb muscles were collected for cachexia indices and mitochondrial assessment via western blotting, high‐resolution respirometry and transmission electron microscopy (TEM).ResultsObese LLC mice experienced significant tumour‐free body weight loss similar to lean (−12.8% vs. −11.8%, P = 0.0001) but had reduced survival (33.3% vs. 6.67%, χ2 = 10.04, P = 0.0182). Obese LLC mice had reduced muscle weights (−24%, P < 0.0354) and mCSA (−16%, P = 0.0004) with similar activation of muscle p65 (P = 0.0337), and p38 (P = 0.0008). ADP‐dependent coupled respiration was reduced in both Obese and Obese LLC muscle (−30%, P = 0.0072) consistent with reductions in volitional cage activity (−39%, P < 0.0001) and grip strength (−41%, P < 0.0001). TEM revealed stepwise reductions in intermyofibrillar and subsarcolemmal mitochondrial size with Obese (IMF: −37%, P = 0.0009; SS: −21%, P = 0.0101) and LLC (IMF: −40%, P = 0.0019; SS: −27%, P = 0.0383) mice. Obese LLC mice had increased pAMPK (T172; P = 0.0103) and reduced FIS1 (P = 0.0029) and DRP1 (P < 0.0001) mitochondrial fission proteins, which were each unchanged in Lean LLC. Further, mitochondrial TEM analysis revealed that Obese LLC mice had an accumulation of damaged and dysfunctional mitochondria (IMF: 357%, P = 0.0395; SS: 138%, P = 0.0174) in concert with an accumulation of p62 (P = 0.0328) suggesting impaired autophagy and clearance of damaged mitochondria. Moreover, we observed increases in electron lucent vacuoles only in Obese LLC muscle (IMF: 421%, P = 0.0260; SS: 392%, P = 0.0192), further supporting an accumulation of damaged materials that cannot be properly cleared in the obese cachectic muscle.ConclusionsTaken together, these results demonstrate that obesity is not protective against cachexia and suggest exacerbated impairments to mitochondrial function and quality control with a particular disruption in the removal of damaged mitochondria. Our findings highlight the need for consideration of the severity of obesity and pre‐existing metabolic conditions when determining the impact of weight status on cancer‐induced cachexia and functional mitochondrial deficits.

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3