Forestry impacts on stream flows and temperatures: A quantitative synthesis of paired catchment studies across the Pacific salmon range

Author:

Naman Sean M.1ORCID,Pitman Kara J.2,Cunningham Dylan S.23,Potapova Anna24,Chartrand Shawn M.5ORCID,Sloat Matthew R.6,Moore Jonathan W.2

Affiliation:

1. Fisheries and Oceans Canada Freshwater Ecosystems Section Cultus Lake British Columbia Canada

2. Earth to Ocean Research Group Simon Fraser University Burnaby British Columbia Canada

3. Fisheries and Oceans Canada Pacific Biological Station Nanaimo British Columbia Canada

4. Fisheries and Oceans Canada Quantitative Assessment Methods Section Delta British Columbia Canada

5. School of Environmental Science Simon Fraser University Burnaby British Columbia Canada

6. Wild Salmon Center Portland Oregon USA

Abstract

Abstract Forestry is pervasive across temperate North America and may influence aquatic environmental conditions such as flows and temperatures, as well as important species such as Pacific salmon (Oncorhynchus spp.). While there have been many large‐scale forestry experiments using paired catchment designs, these studies have yet to be quantitatively synthesized. Thus, it remains unclear whether forestry impacts are consistent, context‐dependent or unpredictable. This study aims to quantitatively synthesize forestry impacts on streamflow and temperature, through a systematic review and synthesis of paired catchment studies across the range of Pacific salmon. Specifically, we investigated whether generalizable relationships exist between forestry intensity (percent watershed harvested) and impacts to streamflow and temperature. We also examined whether watershed features (climate, hydrology and lithology) and harvest method mediated forestry impacts. We extracted information from 35 unique paired‐catchments from California to Alaska. Forestry had strong impacts on peak and low flows and maximum summer water temperatures, but responses were quite variable. Across all catchments, forestry elevated peak flows ~20% (n = 31 catchments), reduced low flows ~25% (n = 13 catchments) and increased maximum summer temperatures ~15% (n = 35 catchments) on average. However, these impacts were variable and were not predictable based on forestry intensity, thus broader stressor–response relationships were not supported. Forestry impacts on peak flows and maximum summer temperatures varied spatially. Peak flow impacts increased with northward latitude and temperature impacts decreased with eastward longitude. However, the magnitude of impacts were unrelated to other watershed attributes, which included climate (precipitation and aridity), rain versus snow hydrology, elevation and bedrock lithology. Harvest method and riparian buffer presence also had no detected effects on forestry impacts across studies and statistical models explained a low proportion of variation overall. Collectively, our results indicate that forestry can have substantial impacts on key environmental conditions; however, the magnitude of impact was variable and could not be clearly linked to easily measured watershed characteristics. This implies that forestry impacts may not be broadly predictable. Probabilistic risk models based on distributions of potential impacts may therefore be more useful for watershed management in data‐poor situations.

Funder

Fisheries and Oceans Canada

Liber Ero Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3