Archaeological prospection using WorldView‐3 short‐wave infrared (SWIR) satellite imagery: Case studies from the Fertile Crescent

Author:

Casana Jesse1,Ferwerda Carolin2

Affiliation:

1. Department of Anthropology Dartmouth College Hanover New Hampshire USA

2. Spatial Archaeometry Lab (SPARCL) Dartmouth College New Hampshire USA

Abstract

AbstractGeologists have long valued satellite imagery in the short‐wave infrared (SWIR) part of the electromagnetic spectrum (1100–2500 nm) because it can reveal subtle differences in minerology and soil moisture that are otherwise invisible, but the low spatial resolution (20‐30 m) of publicly available SWIR imagery has limited its utility for archaeological investigations. As part of a NASA‐funded research project, this paper presents results of an effort to evaluate the potential of higher resolution (3.7 m), 8‐band SWIR imagery from the WorldView‐3 satellite programme to aid in the identification and mapping of archaeological sites and landscape features in the Fertile Crescent. With case studies in the Amuq Plain of southern Turkey, the Khabur Plain of eastern Syria, and the Diyala Plain of southern Iraq, we utilize several methods including experiments with numerous band combinations, production of band ratios designed for crop cover analysis and support vector machine (SVM) classification techniques to enhance site visibility in multispectral SWIR imagery. Results reveal some of the seasonal, land use/cover and other factors that can impact the visibility of archaeological sites and features, demonstrating the potential and pitfalls of this emerging remote sensing resource.

Funder

National Aeronautics and Space Administration

National Endowment for the Humanities

National Science Foundation

American Council of Learned Societies

Publisher

Wiley

Subject

Archeology,History

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3