Drone-Acquired Short-Wave Infrared (SWIR) Imagery in Landscape Archaeology: An Experimental Approach

Author:

Casana Jesse1ORCID,Ferwerda Carolin2ORCID

Affiliation:

1. Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA

2. Spatial Archaeometry Lab (SPARCL), Dartmouth College, Hanover, NH 03755, USA

Abstract

Many rocks, minerals, and soil types reflect short-wave infrared (SWIR) imagery (900–2500 nm) in distinct ways, and geologists have long relied on this property to aid in the mapping of differing surface lithologies. Although surface archaeological features including artifacts, anthrosols, or structural remains also likely reflect SWIR wavelengths of light in unique ways, archaeological applications of SWIR imagery are rare, largely due to the low spatial resolution and high acquisition costs of these data. Fortunately, a new generation of compact, drone-deployable sensors now enables the collection of ultra-high-resolution (<10 cm), hyperspectral (>100 bands) SWIR imagery using a consumer-grade drone, while the analysis of these complex datasets is now facilitated by powerful imagery-processing software packages. This paper presents an experimental effort to develop a methodology that would allow archaeologists to collect SWIR imagery using a drone, locate surface artifacts in the resultant data, and identify different artifact types in the imagery based on their reflectance values across the 900–1700 nm spectrum. Our results illustrate both the potential of this novel approach to exploring the archaeological record, as we successfully locate and characterize many surface artifacts in our experimental study, while also highlighting challenges in successful data collection and analysis, largely related to current limitations in sensor and drone technology. These findings show that as underlying hardware sees continued improvements in the coming years, drone-acquired SWIR imagery can become a powerful tool for the discovery, documentation, and analysis of archaeological landscapes.

Funder

NASA Space Archaeology Program

National Science Foundation’s Archaeometry Program

Neukom Institute for Computational Science

Publisher

MDPI AG

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3