Interactions between potassium ashes and oxygen carriers based on natural and waste materials at different initial oxidation states

Author:

Purnomo Victor1,Hildor Fredrik1,Knutsson Pavleta1,Leion Henrik1

Affiliation:

1. Division of Energy and Materials Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden

Abstract

AbstractOne of the most essential features of an oxygen carrier is its ability to be oxidized and reduced in order to transfer oxygen in a chemical looping system. A highly reduced oxygen carrier can experience multiple performance issues, such as decreased reactivity, agglomeration, and defluidization. This is crucial for processes that require limited oxygen transfer from the air reactor to the fuel reactor. Meanwhile, biomasses as environmentally friendly fuel options contain ashes, which would inevitably react with oxygen carriers and exacerbate the performance issues. To mimic the interactions between a highly reduced oxygen carrier and biomass ash compounds, four iron‐based oxygen carriers, based on natural ores and waste materials, and three potassium salts, K2CO3, KH2PO4, and K2SO4, were investigated in a tubular reactor under an atmosphere consisting of 2.5% H2 and 10% steam in Ar and N2 at 900°C for 3 h. The results from the X‐ray diffraction (XRD) material analysis showed that both initially fully oxidized and highly reduced materials reach the same oxidation state after the experiment. Based on the scanning electron microscopy coupled with energy dispersive X‐ray spectroscopy results, K from K2CO3 and K2SO4 diffuses in the oxygen carrier particles, while K from KH2PO4 always forms a distinct layer around the particles. The initial oxidation state of an oxygen carrier surface affects the interactions with the potassium salt only to minor extents. Thus, the final state of the material and its performance in a large‐scale process are only occasionally and mildly affected by its initial oxidation state. © 2023 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

Funder

Energimyndigheten

Publisher

Wiley

Subject

Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3