Affiliation:
1. Department of Materials Science and Engineering Gachon University Seongnam South Korea
2. VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry VNU University of Science Hanoi Vietnam
3. Department of Chemistry, Faculty of Building Materials Ha Noi University of Civil Engineering (HUCE) Hanoi Vietnam
Abstract
AbstractThe increasing levels of carbon dioxide (CO2) in our atmosphere demand innovative and efficient methods for its reduction. In this context, we present an advanced solar‐driven photocatalyst, Pt‐doped graphitic carbon nitride (Pt/g‐C3N4), specifically engineered for enhanced photoreduction of CO2. Our findings highlight the dual advantage of Pt/g‐C3N4: enhanced visible light absorption and electron‐hole pair dynamics, ensuring efficient carrier separation. Notably, the CO and CH4 yields, when employing Pt/g‐C3N4, surpassed those with the pristine g‐C3N4 catalyst by factors of 3.1 and 4.3, respectively. Moreover, the Pt/g‐C3N4 catalyst exhibited consistent high‐efficiency of CO2 conversion over successive cycles, emphasizing the catalyst's robustness. This work underscores the potential of Pt/g‐C3N4 as a viable tool against escalating CO2 levels, paving the way for a green and sustainable conversion of this predominant greenhouse gas into beneficial chemicals. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.
Funder
Ministry of Science, ICT and Future Planning
Subject
Environmental Chemistry,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献