Effects of long‐term different‐scale rice–duck farming on the growth and yield of paddy rice

Author:

Yang Chaoran1,Han Ning1,Liu Mengting1,Wei Chenghao1,Mao Ruilin1,Chen Changqing1ORCID

Affiliation:

1. College of Agriculture/Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing China

Abstract

AbstractBACKGROUNDTo maintain rice production and increase revenue, rice–duck (RD) farming is a contemporary ecological cycle technology that has been widely used in Asia. However, due to the clustering activity of duck flocks, the consequences of long‐term RD farming on rice growth at different scales are still unknown. Here, we studied RD farming using several different treatments (CK: conventional rice farming; RD1: 667 m2; RD2: 2000 m2; and RD3: 3333 m2).RESULTSThe results demonstrated that the maximum tillers, effective spikes, dry matter accumulation, and lodging index of rice under RD farming were significantly decreased by 17.9%, 9.8%, 14.8%, and 17.8%, respectively, which ultimately caused a significant decrease in yield of 10.6%. However, RD farming significantly increased root oxidation activity and the ear‐bearing tiller rate of rice by 25.5% and 11.1%, respectively, and improved yield stability. For different scales of RD farming, the lodging resistance index of RD1 was significantly lower than that of RD2 and RD3 by 10.0% and 15.2%, respectively, whereas the root oxidation activity and dry matter accumulation of RD2 were significantly higher than those of RD1 and RD3 by 11.1%, 4.7%, 8.6%, and 5.1%, respectively. For rice yield, there was no significant difference among the different scales.CONCLUSIONThis long‐term experiment helped elucidate the complicated effects of RD farming at different scales on the growth and yield of rice. It is also critical to consider the economic advantages of different scales of RD farming to assess the impact of this system more thoroughly. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3