Affiliation:
1. College of Information Technology, Hunan Agricultural University, Changsha 410128, China
2. Center of Information and Networks, Hunan Agricultural University, Changsha 410128, China
Abstract
Rice-duck integrated farming is an effective step under today’s sustainable development background. To make better economic and ecological benefits, a rice-duck agroecosystem is established and kept, in which the paddy field, rice, and the duck mutually promote one another. But the duck density and complex stocking time must be rationally selected. Aiming to attain quantitative assessment and optimal selection of the duck density and complex stocking time in this kind of systems, a methodology based on proposed mathematical models in terms of comparative economic and ecological benefits is addressed. Then the models are solved by a hybrid intelligent algorithmNN-GAthat integrates the Neural Networks (NN) and Genetic Algorithm (GA), making use of the fitting ability in nonlinear fitness context of Neural Networks and the optimization ability of the Genetic Algorithm. Besides, numerical examples are demonstrated in order to test the proposed models. Results reveal that the methodology is reasonable and feasible.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献