Decrypting solvent‐free microwave as a dual green extraction: studying simultaneous extraction of essential oil and phenolics from the same biomass – valorization and outperforming traditional approaches

Author:

Mukherjee Souvik1,Chouhan Kavi Bhushan Singh2,Mandal Vivekananda1ORCID

Affiliation:

1. Department of Pharmacy Guru Ghasidas Central University Bilaspur India

2. Department of Pharmacognosy Chhatrapati Shivaji Institute of Pharmacy Durg India

Abstract

AbstractBACKGROUNDThe current research work focuses on the sustainable utilization of plant biomass so that two separate classes of phytocompounds (volatile and non‐volatile principles) can be extracted from the same biomass simultaneously. The hydro‐diffusion and gravity variant of solvent‐free microwave‐based extraction (MHG‐SFME) was attempted for the extraction of Piper betle L. essential oil (PBEO).RESULTSThe threat of milky emulsion has been exemplified for the first time which is likely to occur when the biomass temperature exceeds a critical value (85 °C). A microwave power level of 255 W with 25 min of extraction time produced PBEO with eugenol content 123% more than that obtained with steam distillation (SD). The said optimal MHG‐SFME conditions returned PBEO with the highest phenolic (20.8 mg GAE g−1 of oil) and eugenol (657.57 μg g−1) contents. PBEO showed better thermal behavior when compared to the EO obtained from SD.CONCLUSIONThe proposed method was capable of retaining non‐volatile principles, as the retention of total phenolics in biomass after MHG‐SFME was found to be 95%, indicating reusability of the biomass for the extraction of non‐volatile principles. In contrast, the retention factor of phenolics content for SD was found to be 17.7% only. Real‐time evidence in the form of chemo‐microscopy and scanning electron microscopy was generated to understand the retention of phenolics and ultrastructural changes upon microwave exposure. Complete glandular rupture was evident in the biomass subjected to MHG‐SFME while the oil glands appeared squeezed for the biomass which underwent SD. Complete profiling of phenolics and flavonoid principles of the leftover biomass was carried out. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3