Colorimetric and fluorimetric pH sensing using polydiacetylene embedded within PVC‐PCL nanofibers

Author:

Kalisz Justyna1,Zarębska Justyna1,Kijeńska‐Gawrońska Ewa2,Maksymiuk Krzysztof1,Michalska Agata1ORCID

Affiliation:

1. Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw

2. Centre for Advanced Materials and Technologies CEZAMAT Warsaw University of Technology Poleczki 19 02-822 Warsaw Poland

Abstract

AbstractThe applicability of model polydiacetylenes (PDAs) in hydrogen ions sensitive optodes was tested. Nanofibers mats were electrospun using a mixture of polyvinyl chloride (PVC) and polycaprolactone (PCL) together with 10, 12‐tricosadiynoic acid (TCDA) or 10,12‐pentacosadiynoic acid (PCDA). After the polymerization the mats were applied in colorimetric and fluorimetric pH sensors. The PDAs were formed by photopolymerization with a UV lamp (254 nm), resulting in a change of mats color from white to dark blue. The morphology of both fiber mats is similar (SEM images), and the average diameters of fibers were estimated as equal to 228±73 and 248±61 nm for TCDA and PCDA, respectively. As the pH increases, the color of the fiber mat changes from blue to red and the process can be followed visually. The result obtained by computer image analysis showed a sigmoidal increase in the intensity of red and a decrease in the intensity of blue color with increasing pH. A similar sigmoidal response is observed for the dependence of the emission intensity on the pH. Changes in the recorded signal occur in the pH range from 7 to 8.5 or from 8 to 9.5 for mats with TCDA and PCDA, respectively. Both readout modes can be successfully used for pH sensing with proposed nanofibrous mats in the range of pH close to the physiological pH range.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

Subject

Electrochemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3