Advanced electrocatalytic materials based biosensors for cancer cell detection – A review

Author:

Sridharan Gokul1,Atchudan Raji2,Magesh Vasanth1,Arya Sandeep3,Ganapathy Dhanraj1,Nallaswamy Deepak1,Sundramoorthy Ashok K.1ORCID

Affiliation:

1. Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India

2. School of Chemical Engineering Yeungnam University Gyeongsan 38541 Korea

3. Department of Physics University of Jammu Jammu, And Kashmir 180006 Jammu India

Abstract

AbstractHerein, we have highlighted the latest developments on biosensors for cancer cell detection. Electrochemical (EC) biosensors offer several advantages such as high sensitivity, selectivity, rapid analysis, portability, low‐cost, etc. Generally, biosensors could be classified into other basic categories such as immunosensors, aptasensors, cytosensors, electrochemiluminescence (ECL), and photo‐electrochemical (PEC) sensors. The significance of the EC biosensors is that they could detect several biomolecules in human body including cholesterol, glucose, lactate, uric acid, DNA, blood ketones, hemoglobin, and others. Recently, various EC biosensors have been developed by using electrocatalytic materials such as silver sulfide (Ag2S), black phosphene (BPene), hexagonal carbon nitrogen tube (HCNT), carbon dots (CDs)/cobalt oxy‐hydroxide (CoOOH), cuprous oxide (Cu2O), polymer dots (PDs), manganese oxide (MnO2), graphene derivatives, and gold nanoparticles (Au‐NPs). In some cases, these newly developed biosensors could be able to detect cancer cells with a limit of detection (LOD) of 1 cell/mL. In addition, many remaining challenges have to be addressed and validated by testing more real samples and confirm that these EC biosensors are more accurate and reliable to measure cancer cells in the blood and salivary samples.

Publisher

Wiley

Subject

Electrochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3