Optimal boosting method of HPC concrete compressive and tensile strength prediction

Author:

Chao Xu1

Affiliation:

1. College of Civil Engineering and Architecture Tongling University Tongling China

Abstract

AbstractThe evaluation of fly ash (FA) and micro‐silica (MS) effects on the mechanical properties of concrete at various ages prompts the search for efficient factors in forecasting the compressive strength (CS) and tensile strength (TS), which are extendable for future investigation as well as practical use. The main aim of this article is to overcome the complexity caused by nonlinearity, which is rooted in the relationship between input variables and outputs. Also, the nonlinearity is getting worse through the existence of admixtures. The Adaptive Boosting (ADA) approach was utilized in the related study as a hybrid model to provide an optimal relation between the ingredients and the mechanical strengths for evaluating the parameters most useful in predicting the CS and TS of high‐performance concrete. Furthermore, model boosting is applied using the starling murmuration optimization (SMO), termite queen algorithm (TQO), and gannet optimization algorithm (GOA) algorithms to reach the highest convergence. As a result of assessing the related models, the ADA‐SMO obtained a coefficient correlation of 0.9981 and 0.9825 for the predictions of CS and TS, respectively. Considering the adaptive framework provided to have the best compatibility with the complex physics of the problem, the ADA‐SMO earned the highest level of accuracy in estimating CS and TS among other hybrid models and was introduced as a trustable model in the prediction of strength properties.

Funder

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3