Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete
Author:
Publisher
Elsevier BV
Subject
General Materials Science,Building and Construction,Civil and Structural Engineering
Reference63 articles.
1. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC;Yazıcı;Constr. Build. Mater.,2007
2. Experimental study and modeling of fiber volume effects on frost resistance of fiber reinforced concrete;Nili;International Journal of Civil Engineering,2018
3. Influence of matrix cracking and hybrid fiber reinforcement on the corrosion initiation and propagation behaviors of reinforced concrete;Nguyen;Corros. Sci.,2018
4. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods;Young;Cem. Concr. Res.,2019
5. Performance comparison of SVM and ANN in predicting compressive strength of concrete;Akande;IOSR Journal of Computer Engineering,2014
Cited by 227 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP bars;Case Studies in Construction Materials;2024-12
2. Intelligent mix design of steel fiber reinforced concrete using a particle swarm algorithm based on a multi-objective optimization model;Journal of Building Engineering;2024-11
3. Determination of concrete compressive strength from surface images with the integration of CNN and SVR methods;Measurement;2024-10
4. Machine and deep learning methods for concrete strength Prediction: A bibliometric and content analysis review of research trends and future directions;Applied Soft Computing;2024-10
5. Designing a reliable machine learning system for accurately estimating the ultimate condition of FRP-confined concrete;Scientific Reports;2024-09-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3