Data‐driven approach for investigating and predicting of compressive strength of fly ash–slag geopolymer concrete

Author:

Tran Van Quan1ORCID

Affiliation:

1. University of Transport Technology Thanh Xuan Hanoi Vietnam

Abstract

AbstractFly ash–slag geopolymer concrete is an intangible material that does not use conventional Portland cement, thereby reducing CO2 emissions into the environment, and helping to increase sustainable development. However, compared with conventional concrete, the compressive strength of fly ash–slag geopolymer concrete is complexly dependent on many factors. Using the data‐driven approach for investigating and predicting fly ash–slag geopolymer concrete compressive strength is a suitable choice. This study introduces 11 easily accessible machine learning models in open‐source libraries of the Python programming language such as support vector machine, random forest (RF), gradient boosting (GB), AdaBoost, decision trees, light GB machine, extreme GB (XGB), K‐nearest neighbors, multivariable regression, Gaussian process regression, and CatBoost (CatB). Based on a dataset of 158 samples, 14 inputs, and 1 output variable compressive strength, the performance of 11 machine learning models was evaluated through 4 criteria including coefficient of determination, root mean square error, mean absolute error, and mean absolute percentage error combined with 10 repeats of 10‐fold cross‐validation. Four models have the best performance based on the above four criteria value in determining compressive strength for testing dataset sorted descending is CatB > XGB > RF > GB. Global Shapley (SHAP) value‐based CatB and XGB indicates three groups of factors with decreasing influence on compressive strength of geopolymer concrete: group I (slag, molarity, coarse aggregate, curing temperature, and alkaline activator/binder) > group II (Na2SiO3 content, NaOH content, fine aggregate, fly ash content), curing period > group III (extra water added, NaOH/Na2SiO3, superplasticizer content, rest period). Extra water added, NaOH/Na2SiO3, superplasticizer content, rest period have insignificant influence on the compressive strength value of geopolymer concrete. The greater the slag content in the slag–fly ash mixture, the greater the compressive strength of geopolymer concrete. The optimum molarity of NaOH concentration is about 14–16 M for designing the compressive strength of geopolymer concrete. SHAP values partial dependence plots (PDP) and PDP indicate that alkaline activator/binder optimal values exist to achieve high compressive strength. The compressive strength increases with curing temperature between 20 and 100°C. PDP values show that the tendency to increase compressive strength with increasing coarse aggregate content from about 750 to 1250 kg/m3.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference110 articles.

1. An overview of the chemistry of alkali-activated cement-based binders

2. Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review

3. DavidovitsJ SawyerJL.Early high‐strength mineral polymer US4509985A.1985Available fromhttps://patents.google.com/patent/US4509985A/en. Accessed 7 March 2023

4. Alkali-activated fly ashes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3