Anticipation of the compressive strength of steel fiber‐reinforced concrete by different types of artificial intelligence methods
Author:
Affiliation:
1. Department of Civil Engineering Science and Research Branch Islamic Azad University Tehran Iran
2. Department of Civil Engineering Faculty of Engineering, Monash University Clayton Victoria Australia
Publisher
Wiley
Subject
Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/suco.202100776
Reference66 articles.
1. Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete
2. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete
3. Mechanics of Crack Arrest in Concrete
4. A review on steel fiber reinforced concrete;Pathan MG;Ijarse,2017
5. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of properties of recycled aggregate concrete using machine learning models: A critical review;Journal of Building Engineering;2024-08
2. Radial Basis Function Neural Network-Based Modeling and Application of the Weight Prediction for Expanded Cut Tobacco Before Resurgence;Proceedings of the 2023 International Conference on Artificial Intelligence, Systems and Network Security;2023-12-22
3. Using artificial intelligence methods to predict the compressive strength of concrete containing sugarcane bagasse ash;Construction and Building Materials;2023-12
4. Artificial intelligence techniques in advanced concrete technology: A comprehensive survey on 10 years research trend;Engineering Reports;2023-05-23
5. Fly ash-based geopolymer concrete's compressive strength estimation by applying artificial intelligence methods;Measurement;2022-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3