Epigenetic Control of Mesenchymal Stem Cell Fate Decision via Histone Methyltransferase Ash1l

Author:

Yin Bei12,Yu Fanyuan12,Wang Chenglin12,Li Boer12,Liu Mengyu12,Ye Ling12

Affiliation:

1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China

2. West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China

Abstract

Abstract Previous research indicates that knocking out absent, small, or homeotic-like (Ash1l) in mice, a histone 3 lysine 4 (H3K4) trimethyltransferase, can result in arthritis with more severe cartilage and bone destruction. Research has documented the essential role of Ash1l in stem cell fate decision such as hematopoietic stem cells and the progenitors of keratinocytes. Following up on those insights, our research seeks to document the function of Ash1l in skeletal formation, specifically whether it controls the fate decision of mesenchymal progenitor cells. Our findings indicate that in osteoporotic bones, Ash1l was significantly decreased, indicating a positive correlation between bone mass and the expression of Ash1l. Silencing of Ash1l that had been markedly upregulated in differentiated C3H10T1/2 (C3) cells hampered osteogenesis and chondrogenesis but promoted adipogenesis. Consistently, overexpression of an Ash1l SET domain-containing fragment 3 rather than Ash1lΔN promoted osteogenic and chondrogenic differentiation of C3 cells and simultaneously inhibited adipogenic differentiation. This indicates that the role of Ash1l in regulating the differentiation of C3 cells is linked to its histone methyltransferase activity. Subcutaneous ex vivo transplantation experiments confirmed the role of Ash1l in the promotion of osteogenesis. Further experiments proved that Ash1l can epigenetically affect the expression of essential osteogenic and chondrogenic transcription factors. It exerts this impact via modifications in the enrichment of H3K4me3 on their promoter regions. Considering the promotional action of Ash1l on bone, it could potentially prompt new therapeutic strategy to promote osteogenesis. Stem Cells  2019;37:115–127

Funder

Innovation Team of Sichuan Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3