ASH1L guards cis-regulatory elements against cyclobutane pyrimidine dimer induction

Author:

Yancoskie Michelle N1ORCID,Khaleghi Reihaneh1,Gururajan Anirvinya2,Raghunathan Aadarsh2,Gupta Aryan2,Diethelm Sarah1,Maritz Corina1,Sturla Shana J3ORCID,Krishnan Marimuthu2ORCID,Naegeli Hanspeter1

Affiliation:

1. Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse , Zurich 8057,  Switzerland

2. Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Hyderabad 500032,  India

3. Department of Health Sciences and Technology, ETH Zurich , Zurich 8092,  Switzerland

Abstract

Abstract The histone methyltransferase ASH1L, first discovered for its role in transcription, has been shown to accelerate the removal of ultraviolet (UV) light-induced cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair. Previous reports demonstrated that CPD excision is most efficient at transcriptional regulatory elements, including enhancers, relative to other genomic sites. Therefore, we analyzed DNA damage maps in ASH1L-proficient and ASH1L-deficient cells to understand how ASH1L controls enhancer stability. This comparison showed that ASH1L protects enhancer sequences against the induction of CPDs besides stimulating repair activity. ASH1L reduces CPD formation at C–containing but not at TT dinucleotides, and no protection occurs against pyrimidine-(6,4)-pyrimidone photoproducts or cisplatin crosslinks. The diminished CPD induction extends to gene promoters but excludes retrotransposons. This guardian role against CPDs in regulatory elements is associated with the presence of H3K4me3 and H3K27ac histone marks, which are known to interact with the PHD and BRD motifs of ASH1L, respectively. Molecular dynamics simulations identified a DNA-binding AT hook of ASH1L that alters the distance and dihedral angle between neighboring C nucleotides to disfavor dimerization. The loss of this protection results in a higher frequency of C–>T transitions at enhancers of skin cancers carrying ASH1L mutations compared to ASH1L-intact counterparts.

Funder

Swiss National Science Foundation

University of Zurich

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3