Skin‐Integrated, Stretchable Electronic Skin for Human Motion Capturing and Pressure Mapping

Author:

Zhao Ling1,Lin Zihong1,Lai King Wai Chiu1ORCID

Affiliation:

1. Department of Biomedical Engineering, Centre for Robotics and Automation City University of Hong Kong Hong Kong 999077 P. R. China

Abstract

AbstractFlexible and wearable electronics have been widely investigated for the extensive applications in real life. Piezoresistive based sensor is one of the common flexible electronics that could be utilized as electronic skin. By simply transducing the external pressure or stretching into resistor signal and integrated with flexible substrate and advanced functional sensing material, piezoresistive based sensors have been applied as the electronic skin. Here, a thin, skin‐integrated, and flexible electronic skin based on piezoresistive working mode is developed. Ultra‐thin polydimethylsiloxane substrate integrated with serpentine‐like Cu electrode could avoid mechanical failing of the device when it is stretched, bended, or twisted. By adopting the advanced function material, MXene, graphene and Ecoflex mixed composite, the electronic skin could sense not only a wide range of pressure from 20.8 to 132 kPa, but also stretching rate from 0% to 20%, allowing the potential application in human motion capturing. Furthermore, a 4 × 4 arrayed electronic skin is fabricated, and demonstrates the prospective application in pressure mapping.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3