Affiliation:
1. Department of Electrical & Electronic Engineering Southern University of Science and Technology Xueyuan Road 1088, Nanshan District Shenzhen Guangdong 518055 China
2. Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
3. Guangdong Provisional Key Laboratory of Functional Oxide Materials and Device Southern University of Science and Technology Xueyuan Road 1088, Nanshan District Shenzhen Guangdong 518055 China
Abstract
AbstractSelf‐sensing liquid crystal elastomer (LCE) actuators with integration of sensing and actuating have attracted significant attention in health monitoring and physical rehabilitation therapy. However, the development of LCE actuators equipped with high mechanical strength, self‐sensing capabilities, and automatic control simultaneously is still a significant challenge. Here, intelligent self‐sensing LCE actuators with high mechanical strength and automatic control are demonstrated by doping carbon‐materials composite of graphite and carbon black. The proposed actuators, driven by the electrothermal effect, demonstrate a significant increase in the ratio of lifted object mass/self‐weight ratio up to 1168 times, which is then tested in activities such as football kicking and arm swinging of a doll. The self‐sensing LCE actuators possess a 30% actuation strain and have real‐time sensing capability during Joule heating. They can be programmed by control circuits based on conditional logic judgments of the target. In addition, a smart glove equipped with self‐sensing LCE actuators, which have high mechanical strength and an automatic control system for assisting finger movement, is also demonstrated. The proposed LCE actuator shows great potential for applications in assisting finger movement, aiding in joint and knee recovery, and other smart physical rehabilitation therapy applications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献