Herbivores disrupt the flow of food resources to termites in dryland ecosystems

Author:

Wijas Baptiste J.12ORCID,Cornwell William K.12,Letnic Mike12ORCID

Affiliation:

1. Evolution and Ecology Research Centre University of New South Wales Sydney New South Wales Australia

2. Centre for Ecosystem Science University of New South Wales Sydney New South Wales Australia

Abstract

AbstractIrruption of herbivore populations due to the extirpation of predators has led to dramatic changes in ecosystem functioning worldwide. Herbivores compete with other species for their primary source of nutrition, plant biomass. Such competition is typically considered to occur between species in closely related clades and functional groups but could also occur with detritivores that consume senescent plant biomass. In this study, we tested predictions that in ecosystems where herbivores are not regulated by predators, their indirect impacts on dead vegetation increase with primary productivity and extend to termites that feed on senescent vegetation. We compared dead vegetation cover and termite activity in herbivore exclosures and associated grazed plots at three locations situated along a rainfall gradient in arid Australia where kangaroo populations have irrupted. Dead vegetation cover and termite activity increased with rainfall in ungrazed plots but showed a negligible response to rainfall in grazed plots. Our results suggest that grazing can disrupt the flow of energy to detritivores and decouple the relationship between termite activity and primary productivity. Such disruption could have far‐reaching impacts on arid ecosystems because many organisms sit within “brown food webs” that are sustained by energy derived from the decomposition of senescent plant tissues.

Funder

Australian Research Council

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3