Affiliation:
1. Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan Tashkent Uzbekistan
2. College of Materials Science and Engineering, Zhejiang Sci‐Tech University Hangzhou China
Abstract
AbstractIn this study, selenium nanoparticles (SeNPs) were synthesized and stabilized by reducing sodium selenite using ascorbic acid in an aqueous solution of sodium carboxymethylcellulose (Na‐CMC) with a degree of substitution of 0.97 and a degree of polymerization of 810. IR‐Fourier spectroscopy revealed that coordination bonds between functional groups in Na‐CMC and SeNPs resulted in the development of polymer‐metal complexes. UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods were used to determine the SeNP sizes in the structure of the nanocomposite film. Investigation of the stabilization and nonstabilization of SeNPs over several cycles has shown that the effect of the polymer matrix of Na‐CMC on the stabilization of nanoparticles was achieved for 672 h, which was confirmed by the unchanged size distribution and resistance to change of the SeNPs synthesized in Na‐CMC solutions.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献