Formation, structure, and morphology of nanofiber mat on the base sodium‐carboxymethylcellulose/polyvinyl‐alcohol/silver nanoparticles composite

Author:

Ergashovich Yunusov Khaydar1ORCID,Abdupatto O'g'li Atakhanov Abdumutolib1,Shodievich Ashurov Nurbek1,Ugli Mirkholisov Mirafzal Muzaffar1,Sharafovna Rashidova Sayyora1,Jiang Guohua2,Wan Yi3,Yu Miao3

Affiliation:

1. Department of cellulose chemistry and technology Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan Tashkent Uzbekistan

2. College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China

3. School of Biomedical Engineering Hainan University Haikou China

Abstract

AbstractStable silver nanoparticles were synthesized in solutions containing sodium‐carboxymethylcellulose and polyvinyl alcohol, and their structure, morphology, and physicochemical properties were studied. The morphology and diameter sizes of the nanofibers of carboxymethylcellulose/polyvinyl alcohol containing silver nanoparticles were investigated using atomic force microscopy and scanning electron microscopy. The investigations showed that nanofibers with diameter sizes ranging from 50 to 130 nm were obtained from the carboxymethylcellulose/polyvinyl alcohol/silver nanoparticles solution. The size and form of silver nanoparticles formed within the solution of carboxymethylcellulose/polyvinyl alcohol based on nanofiber were determined by X‐ray diffraction (XRD), UV–visible (UV–VIS) spectroscopy, and dynamic light scattering (DLS) investigations, revealing nanoparticles with diameters ranging from 5 to 26 nm. The nanofiber mat containing silver nanoparticles exhibited significant antimicrobial activity against both Staphylococcus epidermidis and Candida albicans. The nanofiber mat containing stable silver nanoparticles could be utilized as an antimicrobial facemask for air filtration and for the treatment of burn wounds.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3