Genotype by environment interaction characterization and its modeling with random regression to climatic variables in two rice breeding populations

Author:

Rebollo Inés12ORCID,Aguilar Ignacio1ORCID,Pérez de Vida Fernando3,Molina Federico3,Gutiérrez Lucía24ORCID,Rosas Juan Eduardo23ORCID

Affiliation:

1. Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental Las Brujas Ruta 48 km 10 Rincón del Colorado Canelones Uruguay

2. Department of Statistics University de la República, College of Agriculture Garzón 780 Montevideo Montevideo Uruguay

3. Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental Treinta y Tres Ruta 8 km 281 Treinta y Tres Uruguay

4. Department of Agronomy University of Wisconsin–Madison 1575 Linden Drive Madison Wisconsin USA

Abstract

AbstractGenotype by environment interaction (GEI) is one of the main challenges in plant breeding. A complete characterization of it is necessary to decide on proper breeding strategies. Random regression models (RRMs) allow a genotype‐specific response to each regressor factor. RRMs that include selected environmental variables represent a promising approach to deal with GEI in genomic prediction. They enable to predict for both tested and untested environments, but their utility in a plant breeding scenario remains to be shown. We used phenotypic, climatic, pedigree, and genomic data from two public subtropical rice (Oryza sativa L.) breeding programs; one manages the indica population and the other manages the japonica population. First, we characterized GEI for grain yield (GY) with a set of tools: variance component estimation, mega‐environment (ME) definition, and correlation between locations, sowing periods, and MEs. Then, we identified the most influential climatic variables related to GY and its GEI and used them in RRMs for single‐step genomic prediction. Finally, we evaluated the predictive ability of these models for GY prediction in tested and untested years and environments using the complete dataset and within each ME. Our results suggest large GEI in both populations while larger in indica than in japonica. In indica, early sowing periods showed crossover (i.e., rank‐change) GEI with other sowing periods. Climatic variables related to temperature, radiation, wind, and precipitation affecting GY were identified and differed in each population. RRMs with selected climatic covariates improved the predictive ability in both tested and untested years and environments. Prediction using the complete dataset performed better than predicting within each ME.

Funder

Comisión Sectorial de Investigación Científica

Instituto Nacional de Investigación Agropecuaria

Agencia Nacional de Investigación e Innovación

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3