Genomic prediction for targeted populations of environments in oat (Avena sativa)

Author:

Sandro Pablo,Bhatta Madhav,Bower Alisha,Carlson Sarah,Jannink Jean-Luc,Waring David J.ORCID,Birkett Clay,Smith Kevin,Wiersma Jochum,Caffe Melanie,Kleinjan Jonathan,McMullen Michael S.,English Lydia,Gutierrez LuciaORCID

Abstract

Context Long-term multi-environment trials (METs) could improve genomic prediction models for plant breeding programs by better representing the target population of environments (TPE). However, METs are generally highly unbalanced because genotypes are routinely dropped from trials after a few years. Furthermore, in the presence of genotype × environment interaction (GEI), selection of the environments to include in a prediction set becomes critical to represent specific TPEs. Aims The goals of this study were to compare strategies for modelling GEI in genomic prediction, using large METs from oat (Avena sativa L.) breeding programs in the Midwest United States, and to develop a variety decision tool for farmers and plant breeders. Methods The performance of genotypes in TPEs was predicted by using different strategies for handling GEI in genomic prediction models including systematic and/or random GEI components. These strategies were also used to build the variety decision tool for farmers. Key results Genomic prediction for unknown genotypes, locations and years within TPEs had moderate to high predictive ability, accuracy and reliability. Modelling GEI was beneficial in small, but not in large, mega-environments. The latest 3 years were highly predictive of performance in an upcoming year for most years but not for years with unusual weather patterns. High predictive ability, accuracy and reliability were obtained when large datasets were used in TPEs. Conclusions Deployment of historical datasets can be accomplished through meaningful delineation and prediction for TPEs. Implications We have shown the performance of a simple modelling strategy for handling prediction for TPEs when deploying large historical datasets.

Funder

National Institute of Food and Agriculture

U.S. Department of Agriculture

North Central Research Station

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3