Ecological and anthropogenic drivers of waterfowl productivity are synchronous across species, space, and time

Author:

Weegman Mitch D.1ORCID,Devries James H.2,Clark Robert G.13,Howerter David W.2,Gibson Daniel1ORCID,Donnelly J. Patrick4ORCID,Arnold Todd W.5

Affiliation:

1. Department of Biology University of Saskatchewan Saskatoon Saskatchewan Canada

2. Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada Stonewall Manitoba Canada

3. Prairie and Northern Wildlife Research Centre, Environment and Climate Change Canada Saskatoon Saskatchewan Canada

4. W.A. Franke College of Forestry and Conservation, Wildlife Biology Program University of Montana Missoula Montana USA

5. Department of Fisheries Wildlife and Conservation Biology, University of Minnesota St. Paul Minnesota USA

Abstract

AbstractKnowledge of interspecific and spatiotemporal variation in demography–environment relationships is key for understanding the population dynamics of sympatric species and developing multispecies conservation strategies. We used hierarchical random‐effects models to examine interspecific and spatial variation in annual productivity in six migratory ducks (i.e., American wigeon [Mareca americana], blue‐winged teal [Spatula discors], gadwall [Mareca strepera], green‐winged teal [Anas crecca], mallard [Anas platyrhynchos] and northern pintail [Anas acuta]) across six distinct ecostrata in the Prairie Pothole Region of North America. We tested whether breeding habitat conditions (seasonal pond counts, agricultural intensification, and grassland acreage) or cross‐seasonal effects (indexed by flooded rice acreage in primary wintering areas) better explained variation in the proportion of juveniles captured during late summer banding. The proportion of juveniles (i.e., productivity) was highly variable within species and ecostrata throughout 1961–2019 and generally declined through time in blue‐winged teal, gadwall, mallard, pintail, and wigeon, but there was no support for a trend in green‐winged teal. Productivity in Canadian ecostrata declined with increasing agricultural intensification and increased with increasing pond counts. We also found a strong cross‐seasonal effect, whereby more flooded rice hectares during winter resulted in higher subsequent productivity. Our results suggest highly consistent environmental and anthropogenic effects on waterfowl productivity across species and space. Our study advances our understanding of current year and cross‐seasonal effects on duck productivity across a suite of species and at finer spatial scales, which could help managers better target working‐lands conservation programs on both breeding and wintering areas. We encourage other researchers to evaluate environmental drivers of population dynamics among species in a single modeling framework for a deeper understanding of whether conservation plans should be generalized or customized given limited financial resources.

Funder

Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3