An FBG‐based optical pressure sensor for the measurement of radial artery pulse pressure

Author:

Gowda Ranjith B.12ORCID,Sharan Preeta3ORCID,Saara K 1,Braim Mona4,Alodhayb Abdullah N.4ORCID

Affiliation:

1. Department of Electronics & Communication Engineering, SOE Dayananda Sagar University Bangalore India

2. Department of Electronics & Communication Engineering Government Polytechnic Sorab Shimoga India

3. Department of Electronics & Communication Engineering The Oxford College of Engineering Bangalore India

4. Department of Physics and Astronomy College of Science, King Saud University Riyadh Saudi Arabia

Abstract

AbstractOne of the diagnostic tool for clinical evaluation and disease diagnosis is a pulse waveform analysis. High fidelity radial artery pulse waveforms have been investigated in clinical research to compute central aortic pressure, which has been demonstrated to be predictive of cardiovascular diseases. The radial artery must be inspected from several angles in order to obtain the best pulse waveform for estimate and diagnosis. In this study, we present the design and experimental testing of an optical sensor based on Fiber Bragg Gratings (FBG). A 3D printed device along with the FBG is used to measure the radial artery pulses. The proposed sensor is used for the purpose of quantifying the radial artery pulse waveform across major pulse position point. The suggested optical sensing system can measure the pulse signal with good accuracy. The main characteristic parameters of the pulse can then be retrieved from the processed signal for their use in clinical applications. By conducting experiments under the direction of medical experts, the pulse signals are measured. In order to experimentally validate the sensor, we used it to detect the pulse waveforms at Guan position of the wrist's radial artery in accordance with the diagnostic standards. The findings show that combining optical technologies for physiological monitoring and radial artery pulse waveform monitoring using FBG in clinical applications are highly feasible.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3