Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes

Author:

Han Mei‐Chen12,Zhang Jia‐Hao1,Yu Chun‐Yu1,Yu Jia‐Cheng2,Wang Yong‐Xin1,Jiang Zhi‐Guo2,Yao Ming2,Xie Gang3,Yu Zhong‐Zhen2,Qu Jin1ORCID

Affiliation:

1. State Key Laboratory of Organic-Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

2. Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing 100029 China

3. PowerChina Beijing Engineering Co., Ltd Beijing 100024 China

Abstract

AbstractAqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3