Author:
Zhai Xian-Zhi,Qu Jin,Hao Shu-Meng,Jing Ya-Qiong,Chang Wei,Wang Juan,Li Wei,Abdelkrim Yasmine,Yuan Hongfu,Yu Zhong-Zhen
Abstract
AbstractMn-based rechargeable aqueous zinc-ion batteries (ZIBs) are highly promising because of their high operating voltages, attractive energy densities, and eco-friendliness. However, the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling. Herein, we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O (NMOH) for high-performance aqueous ZIBs. A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time. Na+ and crystal water enlarge the interlayer distance to enhance the insertion of Zn2+, and some sodium ions are replaced with Zn2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn2+/H+ insertion/extraction, resulting in exceptional specific capacities and satisfactory structural stabilities. Additionally, a pseudo-capacitance derived from the surface-adsorbed Na+ also contributes to the electrochemical performances. The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g−1 at current densities of 200 and 1500 mA g−1, respectively, but also maintains a good long-cycling performance of 201.6 mA h g−1 at a high current density of 500 mA g−1 after 400 cycles, which makes the NMOH cathode competitive for practical applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献