Ligand Modulation of Active Sites to Promote Cobalt‐Doped 1T‐MoS2 Electrocatalytic Hydrogen Evolution in Alkaline Media

Author:

Liu Hai‐Jun1,Zhang Shuo1,Chai Yong‐Ming1,Dong Bin1ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China

Abstract

AbstractHighly efficient hydrogen evolution reaction (HER) electrocatalyst will determine the mass distributions of hydrogen‐powered clean technologies, while still faces grand challenges. In this work, a synergistic ligand modulation plus Co doping strategy is applied to 1T−MoS2 catalyst via CoMo‐metal‐organic frameworks precursors, boosting the HER catalytic activity and durability of 1T−MoS2. Confirmed by Cs corrected transmission electron microscope and X‐ray absorption spectroscopy, the polydentate 1,2‐bis(4‐pyridyl)ethane ligand can stably link with two‐dimensional 1T−MoS2 layers through cobalt sites to expand interlayer spacing of MoS2 (Co−1T−MoS2‐bpe), which promotes active site exposure, accelerates water dissociation, and optimizes the adsorption and desorption of H in alkaline HER processes. Theoretical calculations indicate the promotions in the electronic structure of 1T−MoS2 originate in the formation of three‐dimensional metal‐organic constructs by linking π‐conjugated ligand, which weakens the hybridization between Mo‐3d and S‐2p orbitals, and in turn makes S‐2p orbital more suitable for hybridization with H‐1s orbital. Therefore, Co−1T−MoS2‐bpe exhibits excellent stability and exceedingly low overpotential for alkaline HER (118 mV at 10 mA cm−2). In addition, integrated into an anion‐exchange membrane water electrolyzer, Co−1T−MoS2‐bpe is much superior to the Pt/C catalyst at the large current densities. This study provides a feasible ligand modulation strategy for designs of two‐dimensional catalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3