Aqueous Room‐Temperature Synthesis of Transition Metal Dichalcogenide Nanoparticles: A Sustainable Route to Efficient Hydrogen Evolution

Author:

Li Jing1,Miró Roger2,Wrzesińska‐Lashkova Angelika34,Yu Jing5,Arbiol Jordi56,Vaynzof Yana34,Shavel Alexey2,Lesnyak Vladimir1ORCID

Affiliation:

1. Physical Chemistry TU Dresden Zellescher Weg 19 01069 Dresden Germany

2. Eurecat Centre Tecnològic de Catalunya Unitat de Tecnologia Química Marcel·lí Domingo 2 Tarragona 43007 Spain

3. Chair for Emerging Electronic Technologies TU Dresden Nöthnitzer Str. 61 01187 Dresden Germany

4. Leibniz‐Institute for Solid State and Materials Research Dresden Helmholtzstraße 20 01069 Dresden Germany

5. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB, Bellaterra Barcelona Catalonia 08193 Spain

6. ICREA Pg. Lluís Companys 23 Barcelona Catalonia 08010 Spain

Abstract

AbstractTransition metal dichalcogenides (TMDs) have emerged as a focal point in electrocatalysis, particularly for the hydrogen evolution reaction (HER), owing to their notable catalytic activity, chemical stability, and cost‐efficiency. Despite these advantages, the challenge of devising a practical and economical method for their large‐scale application in HER remains an unresolved and critical issue. In this study, a facile, scalable, and cost‐effective approach is introduced for producing high‐yield, catalytically active TMD nanoparticles, including MoS2, MoSe2, RuS2, and RuSe2. These nanoparticles are synthesized through an aqueous room‐temperature process, which is not only environmentally friendly but also economically feasible for large‐scale production. Remarkably, these TMD nanoparticles exhibit versatile catalytic activity across a broad pH range for HER. Among them, RuSe2 nanoparticles demonstrate catalytic performance comparable to that of a commercial Pt/C electrode. Upon scaling up, the nanomaterials show great potential for integration into practical proton exchange membrane water electrolyzers, maintaining high efficiency even at large current densities and exhibiting very stable performance for up to 100 h. This research paves the way to a sustainable synthesis method of high‐performance catalysts, tailored for industrial hydrogen production applications.

Funder

China Scholarship Council

European Research Council

Generalitat de Catalunya

European Regional Development Fund

European Commission

H2020 European Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3