Carbon‐Based Electrocatalysts for Acidic Oxygen Reduction Reaction

Author:

Cui Pengbo1,Zhao Linjie1,Long Yongde1,Dai Liming2ORCID,Hu Chuangang1ORCID

Affiliation:

1. State Key Laboratory of Organic-Inorganic Composites College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 China

2. ARC Centre of Excellence for Carbon Science and Innovation University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractOxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best‐known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large‐scale applications. Recent breakthroughs in carbon‐based metal‐free electrochemical catalysts (C‐MFECs) show great potential for earth‐abundant carbon materials as low‐cost metal‐free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C‐MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure‐property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Australian Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3