S‐Block Metal Mg‐Mediated Co─N─C as Efficient Oxygen Electrocatalyst for Durable and Temperature‐Adapted Zn–Air Batteries

Author:

Wang Henan1,Niu Xinxin1,Liu Wenxian1,Yin Ruilian2,Dai Jiale1,Guo Wei1,Kong Chao1,Ma Lu1,Ding Xia1,Wu Fangfang1,Shi Wenhui3,Deng Tianqi45,Cao Xiehong1ORCID

Affiliation:

1. College of Materials Science and Engineering, Pinghu Institute of Advanced Materials Zhejiang University of Technology Hangzhou 310014 P. R. China

2. College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China

3. Center for Membrane and Water Science and Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China

4. State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China

5. Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311215 P. R. China

Abstract

AbstractIn the quest to enhance Zn–air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of dd and pd aim to moderate the excessive interaction between the d‐band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s‐block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d‐band center of Co sites, thereby fine‐tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg‐modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol−1, outstripping the performance of both Co─NC (17.6 kJ mol−1), benchmark Pt/C (15.9 kJ mol−1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm−2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h−1. Further, the Mg0.1Co0.9─NC‐based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to −20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3