Successively Controlling Nanoscale Wrinkles of Ultrathin 2D Metal–Organic Frameworks Nanosheets

Author:

Tang Wen‐Qi1,Cheng Yue1,Zhu Jian‐Ping1,Zhou Ye‐Qin1,Xu Ming1,Gu Zhi‐Yuan1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China

Abstract

AbstractThe wrinkles are pervasive in ultrathin two‐dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr‐BTB (BTB=1, 3, 5‐(4‐carboxylphenyl)‐benzene) metal–organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy. Furthermore, high‐angle annular dark‐field (HAADF) images showed lattice distortion in many nanoscale regions, which was precisely matched to the nano‐wrinkles. With the changes of hydrophilicity/hydrophobicity, MOF‐MOF and MOF‐solvent interactions were possibly synergistically regulated and wrinkles with different sizes were obtained, which was supported by HAADF, molecular dynamics, and density functional theory calculation. Different wrinkle sizes resulted in different pore sizes between the Zr‐BTB nanosheet interlayers, providing highly‐oriented thin films and the successive optimization of kinetic diffusion pathways, proved by grazing‐incidence wide‐angle X‐ray scattering and nitrogen adsorption. The most suitable wrinkle pore from Zr‐BTB‐C4 exhibited highly efficient chromatographic separation of the substituted benzene isomers. Our work provides a rational route for the modulation of nanoscale wrinkles and their stacked pores of MOF nanosheets and improves the separation abilities of MOFs.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Jiangsu Provincial Department of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3