Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview

Author:

Tan Yinlong,Hu Biru,Song Jia,Chu Zengyong,Wu Wenjian

Abstract

AbstractThe surface wrinkling of biological tissues is ubiquitous in nature. Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies. Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns, on either planar or curved surfaces. The surface wrinkling on planar substrates has been investigated thoroughly during the past decades. However, most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak. The study of wrinkling on curved substrates is critical for understanding the biological growth, developing three-dimensional (3D) or four-dimensional (4D) fabrication techniques, and creating novel topographic patterns. In this review, fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized. The mechanics behind the wrinkles is compared between the planar and the curved cases. Beyond the film thickness, modulus ratio, and mismatch strain, the substrate curvature is one more significant parameter controlling the surface wrinkling. Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales. Up to date, the wrinkling morphologies on solid/hollow core–shell spheres and cylinders have been simulated and selectively produced. Emerging applications of the curved topographic patterns have been found in smart wetting surfaces, cell culture interfaces, healthcare materials, and actuators, which may accelerate the development of artificial organs, stimuli-responsive devices, and micro/nano fabrications with higher dimensions.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3