Diastereoselective Biomimetic Synthesis of Dimeric Tetrahydrocarbazoles via a Copper(II)‐Catalyzed Cycloisomerization‐[3+2] Cyclodimerization Cascade

Author:

Roy Debayan1ORCID,Baire Beeraiah1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamilnadu India

Abstract

AbstractThe cyclodimerization (homochiral‐ and heterochiral−) of monomeric units for the construction of stereodefined polycyclic systems is a powerful strategy in both biosynthesis and biomimetic synthesis. Herein we have discovered and developed a CuII‐ catalyzed, biomimetic, diastereoselective tandem cycloisomerization‐[3+2] cyclodimerization of 1‐(indol‐2‐yl)pent‐4‐yn‐3‐ol. This novel strategy operates under very mild conditions, providing access to structurally unprecedented dimeric tetrahydrocarbazoles fused to a tetrahydrofuran unit in excellent yields of the products. Several fruitful control experiments, isolation of the monomeric‐cycloisomerized products and their subsequent conversion into the corresponding cyclodimeric products supported their intermediacy and the possible mechanism as a cycloisomerization‐diastereoselective [3+2] cyclodimerization cascade. The cyclodimerization involves a substituent controlled, highly diastereoselective homochiral [3+2] annulation or heterochiral [3+2] annulation of in situ generated 3‐hydroxytetrahydrocarbazoles. The key and important features of this strategy are: a) construction of three new C−C bonds & one new C−O bond; b) creation of two new stereocenters, and c) construction of three new rings, in a single operation; d) low catalyst loading (1–5 mol %); e) 100 % atom economy; and f) rapid construction of structurally unprecedented natural product like polycyclic frameworks. A chiral pool version using an enantio‐ and diastereopure substrate was also demonstrated.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3