Ligand‐Hybridization Activates Lattice‐Hydroxyl‐Groups of NiCo(OH)x Nanowires for Efficient Electrosynthesis

Author:

Liu Xupo1,Wang Xihui1,Mao Chenxing1,Qiu Jiayao1,Wang Ran1,Liu Yi2,Chen Ye1,Wang Deli2ORCID

Affiliation:

1. Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering Henan Normal University Xinxiang 453007 P. R. China

2. Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China

Abstract

AbstractElectrochemical dehydrogenation of hydroxides plays a crucial role in the formation of high‐valence metal active sites toward 5‐hydroxymethylfurfural oxidation reaction (HMFOR) to produce the value‐added chemical of 2,5‐furandicarboxylic (FDCA). Herein, we construct benzoic acid ligand‐hybridized NiCo(OH)x nanowires (BZ‐NiCo(OH)x) with ample electron‐deficient Ni/Co sites for HMFOR. The robust electron‐withdrawing capability of benzoic acid ligands in BZ‐NiCo(OH)x speeds up the electrochemical activation and dehydrogenation of lattice‐hydroxyl‐groups (M2+−O−H⇌M3+−O), boosting the formation of abundant electron‐deficient and high‐valence Ni/Co sites. DFT calculation reveals that the deintercalation proton is prone to establishing a hydrogen bridge with the carbonyl group in benzoic acid, facilitating the proton transfer. Coupled with the synergistic oxidation of Ni/Co sites on hydroxyl and aldehyde groups, BZ‐NiCo(OH)x delivers a remarkable current density of 111.20 mA cm−2 at 1.4 V for HMFOR, exceeding that of NiCo(OH)x by approximately fourfold. And the FDCA yield and Faraday efficiency are as high as 95.24 % and 95.39 %, respectively. The ligand‐hybridized strategy in this work introduces a novel perspective for designing high‐performance transition metal‐based electrocatalysts for biomass conversion.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3