Electrochemical Oxidation of 5‐Hydroxymethylfurfural on CeO2‐Modified Co3O4 with Regulated Intermediate Adsorption and Promoted Charge Transfer

Author:

Zhao Gongchi1,Hai Guangtong2,Zhou Peiyun1,Liu Zhimeng1,Zhang Yanyan1,Peng Baoxiang3,Xia Wei3,Huang Xiubing1ORCID,Wang Ge1

Affiliation:

1. Beijing Key Laboratory of Function Materials for Molecule & Structure Construction School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China

2. Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

3. Laboratory of Industrial Chemistry Ruhr University Bochum 44780 Bochum Germany

Abstract

AbstractElectrocatalytic 5‐hydroxymethylfurfural oxidation reaction (HMFOR) can replace the kinetically slow oxygen evolution reaction to yield high value‐added chemicals. In this study, interface engineering is constructed by modifying CeO2 nanoparticles on Co3O4 nanowires supported by nickel foam (NF). The construction of the heterointerface can facilitate the structural evolution of catalysts and charge transfer, as a result, the successfully synthesized NF@Co3O4/CeO2 exhibits higher 5‐hydroxymethylfurfural conversion (98.0%), 2,5‐furandicarboxylic acid (FDCA) yield (94.5%), and Faradaic efficiency (97.5%) at a low electrolysis potential of 1.40 VRHE compared to NF@Co3O4 and NF@CeO2. Density‐functional theory calculations indicate that the establishment of heterointerface can effectively regulate the intermediate adsorption and promote electron transfer, which greatly reduces the activation energy of the dehydrogenation step in 5‐formyl‐2‐furancarboxylic acid (FFCA), and promotes the further oxidation of FFCA to FDCA, thereby improving the performance of HMFOR. In this study, the HMFOR behavior of the Co3O4/CeO2 interface effect is deeply explored, which provides guidance for the future design of heterointerface catalysts with efficient HMFOR performance.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3