Affiliation:
1. Super Micro Mass Research and Technology Center Center for Environmental Toxin and Emerging-Contaminant Research Institute of Environmental Toxin and Emerging-Contaminant Research Cheng Shiu University Kaohsiung 833301 Taiwan
2. Department of Materials and Mineral Resources Engineering National Taipei University of Technology Taipei 106 Taiwan
3. Department of Chemistry Stella Maris College Affiliated to the University of Madras Chennai 600086 Tamil Nadu India
4. Department of Photonics National Cheng Kung University Tainan 701 Taiwan).
Abstract
AbstractIn the evolving field of electrocatalysis, thermal treatment of nano‐electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano‐electrocatalysts. The focus encompasses an in‐depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro‐active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano‐electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next‐generation sensors and energy conversion technologies.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献