An Organic Coordination Manganese Complex as Cathode for High‐Voltage Aqueous Zinc‐metal Battery

Author:

Zhang Feifan12,Wang Gege12,Wu Jing12,Chi Xiaowei1,Liu Yu1ORCID

Affiliation:

1. Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

2. University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractAqueous Zn−Mn battery has been considered as the most promising scalable energy‐storage system due to its intrinsic safety and especially ultralow cost. However, the traditional Zn−Mn battery mainly using manganese oxides as cathode shows low voltage and suffers from dissolution/disproportionation of the cathode during cycling. Herein, for the first time, a high‐voltage and long‐cycle Zn−Mn battery based on a highly reversible organic coordination manganese complex cathode (Manganese polyacrylate, PAL−Mn) was constructed. Benefiting from the insoluble carboxylate ligand of PAL−Mn that can suppress shuttle effect and disproportionationation reaction of Mn3+ in a mild electrolyte, Mn3+/Mn2+ reaction in coordination state is realized, which not only offers a high discharge voltage of 1.67 V but also exhibits excellent cyclability (100 % capacity retention, after 4000 cycles). High voltage reaction endows the Zn−Mn battery high specific energy (600 Wh kg−1 at 0.2 A g−1), indicating a bright application prospect. The strategy of introducing carboxylate ligands in Zn−Mn battery to harness high‐voltage reaction of Mn3+/Mn2+ well broadens the research of high‐voltage Zn−Mn batteries under mild electrolyte conditions.

Funder

National Natural Science Foundation of China

China Three Gorges Corporation

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3