Ultrahigh‐Loading Manganese‐Based Electrodes for Aqueous Batteries via Polymorph Tuning

Author:

Xiao Xin1ORCID,Zhang Zewen1,Wu Yecun2,Xu Jinwei1,Gao Xin1,Xu Rong1,Huang Wenxiao1,Ye Yusheng1,Oyakhire Solomon T.3,Zhang Pu1ORCID,Chen Baoliang4ORCID,Cevik Emre5,Asiri Sarah M5,Bozkurt Ayhan5,Amine Khalil156,Cui Yi17

Affiliation:

1. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

2. Department of Electrical Engineering Stanford University Stanford CA 94305 USA

3. Department of Chemical Engineering Stanford University Stanford CA 94305 USA

4. Department of Environmental Science Zhejiang University Hangzhou Zhejiang 310058 China

5. Bioenergy Research unit Department of Biophysics Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia

6. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA

7. Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Abstract

AbstractManganese‐based aqueous batteries utilizing Mn2+/MnO2 redox reactions are promising choices for grid‐scale energy storage due to their high theoretical specific capacity, high power capability, low‐cost, and intrinsic safety with water‐based electrolytes. However, the application of such systems is hindered by the insulating nature of deposited MnO2, resulting in low normalized areal loading (0.005–0.05 mAh cm−2) during the charge/discharge cycle. In this work, the electrochemical performance of various MnO2 polymorphs in Mn2+/MnO2 redox reactions is investigated, and ɛ‐MnO2 with low conductivity is determined to be the primary electrochemically deposited phase in normal acidic aqueous electrolyte. It is found that increasing the temperature can change the deposited phase from ɛ‐MnO2 with low conductivity to γ‐MnO2 with two order of magnitude increase in conductivity. It is demonstrated that the highly conductive γ‐MnO2 can be effectively exploited for ultrahigh areal loading electrode, and a normalized areal loading of 33 mAh cm−2 is achieved. At a mild temperature of 50 °C, cells are cycled with an ultrahigh areal loading of 20 mAh cm−2 (1–2 orders of magnitude higher than previous studies) for over 200 cycles with only 13% capacity loss.

Funder

Stanford University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3