Co0−Coδ+ Interface Double‐Site‐Mediated C−C Coupling for the Photothermal Conversion of CO2 into Light Olefins

Author:

Ning Shangbo12ORCID,Ou Honghui34,Li Yaguang1,Lv Cuncai1,Wang Shufang1,Wang Dingsheng4ORCID,Ye Jinhua52ORCID

Affiliation:

1. Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development Hebei University Baoding 071002 P. R. China

2. TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China

3. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

4. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

5. International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan

Abstract

AbstractSolar‐driven CO2 hydrogenation into multi‐carbon products is a highly desirable, but challenging reaction. The bottleneck of this reaction lies in the C−C coupling of C1 intermediates. Herein, we construct the C−C coupling centre for C1 intermediates via the in situ formation of Co0−Coδ+ interface double sites on MgAl2O4 (Co−CoOx/MAO). Our experimental and theoretical prediction results confirmed the effective adsorption and activation of CO2 by the Co0 site to produce C1 intermediates, while the introduction of the electron‐deficient state of Coδ+ can effectively reduce the energy barrier of the key CHCH* intermediates. Consequently, Co−CoOx/MAO exhibited a high C2–4 hydrocarbons production rate of 1303 μmol g−1 h−1; the total organic carbon selectivity of C2–4 hydrocarbons is 62.5 % under light irradiation with a high ratio (≈11) of olefin to paraffin. This study provides a new approach toward the design of photocatalysts used for CO2 conversion into C2+ products.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3