An auto‐configurable machine learning framework to optimize and predict catalysts for CO2 to light olefins process

Author:

Yang Qingchun12ORCID,Fan Yingjie1,Rong Dongwen1,Bao Ruijie1,Zhang Dawei1

Affiliation:

1. School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China

2. East China Engineering Science and Technology Co, Ltd Hefei China

Abstract

AbstractThis study proposed an auto‐configurable machine learning framework based on the differential evolution algorithm (AutoML‐DE) driven by hybrid data for the screening and discovery of promising CO2 to light olefins (CO2TLO) catalysts candidates. The hybrid dataset comprises 532 experimental data from the literature and 296 simulation data. Results show that the AutoML‐DE model with extreme gradient boosting algorithms demonstrated superior performance for predicting the conversion ratio of CO2 and selectivity of light olefins (average R2 > 0.86). After identifying the input feature with the most significant impact on the output feature, the optimal AutoML‐DE model integrated with the genetic algorithm is applied to multiobjective optimization, sensitivity analysis, and prediction of new CO2TLO catalysts. The optimized Cu‐Zn‐Al/SAPO‐34 catalyst has the highest catalytic performance among the reported CO2TLO catalysts. Moreover, five new CO2TLO catalysts with higher yields are successfully predicted. However, the performance of these catalysts should be further verified by experiment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3