Affiliation:
1. School of Aerospace, Transport and Manufacturing (SATM), Centre for Life‐Cycle Engineering and Management Cranfield University Cranfield UK
Abstract
AbstractWind turbine bearings play a crucial role in ensuring the safe and efficient operation of wind turbines. Accurate estimation of the remaining useful life (RUL) of bearings can significantly reduce operating and maintenance costs. In this paper, we propose three advanced data‐driven models to predict the RUL of high‐speed shaft bearings in wind turbines. These models combine the sparrow search algorithm (SSA) with three different regression models, namely support vector machine, random forest (RF) regression and Gaussian process regression. The models are based on features extracted from the vibration signal analysis, and the features are selected based on their monotonicity to evaluate bearing degradation. To optimize the performance of the regression models, all model parameters are tuned using the SSA algorithm. The proposed models are validated using vibration data collected from a real 2 MW commercial wind turbine. Our results demonstrate that the proposed models are effective in predicting the RUL of wind turbine bearings, and the SSA algorithm improves the accuracy of the predictions.
Subject
General Energy,Safety, Risk, Reliability and Quality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献