A comprehensive review on enhancing wind turbine applications with advanced SCADA data analytics and practical insights

Author:

Pandit Ravi1ORCID,Wang Jianlin1

Affiliation:

1. School of Aerospace Transport and Manufacturing (SATM) Cranfield University Cranfield UK

Abstract

AbstractThe aim of this study is to explore the potential and economic benefits of utilising Supervisory Control and Data Acquisition (SCADA) data to improve wind turbine operation and maintenance activities. The review identifies a gap in the current understanding of how to effectively use SCADA data in wind turbine applications. It emphasises the need for pre‐processing SCADA data to ensure data integrity by addressing outliers and employing interpolation techniques. Additionally, it highlights the challenges associated with early fault detection methods using SCADA data, including the development of physical models, data‐driven machine learning models, and statistical regression models. The review also recognises the limitations caused by the lack of public data from wind turbine developers and the imbalance between normal operation data samples and abnormal data samples, negatively impacting model accuracy. The key findings of the review demonstrate that SCADA data‐driven techniques can lead to significant improvements in wind turbine operations and maintenance. The application of data‐driven technologies based on SCADA data has proven effective in reducing operation and maintenance costs and enhancing wind power generation. Moreover, the development of robust decision support systems using SCADA data minimises the need for frequent maintenance interventions in offshore wind farms. To bridge the gap and further enhance wind turbine applications using SCADA data, several recommendations are provided. These include encouraging greater openness in sharing SCADA data to improve the robustness and accuracy of AI models, adopting transfer learning techniques to overcome the scarcity of quality datasets, establishing unified standards and taxonomies, and providing specialised resources such as software applications with interactive graphical user interfaces for easier storage, annotation, and analysis of SCADA data.The authors’ review paper identifies a gap in the current understanding of how to effectively utilise SCADA data in wind turbine applications. It emphasises the importance of pre‐processing SCADA data to ensure data integrity by addressing outliers and employing interpolation techniques. Furthermore, the authors highlight the challenges associated with early fault detection methods using SCADA data, including the development of physical models, data‐driven machine learning models, and statistical regression models.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3