Direct and indirect effects of cougar predation on bighorn sheep fitness

Author:

Cloutier Zachary1ORCID,Festa‐Bianchet Marco12ORCID,Pelletier Fanie12

Affiliation:

1. Département de Biologie Université de Sherbrooke Sherbrooke Quebec Canada

2. Centre d'études nordiques Québec City Quebec Canada

Abstract

AbstractPredation has direct effects on prey population dynamics through mortality, and it can induce indirect effects through fear. The indirect effects of predation have been documented experimentally, but few studies have quantified them in nature so that their role in prey population dynamics remains controversial. Given the expanding or reintroduced populations of large predators in many areas, the quantification of indirect effects of predation is crucial. We sought to evaluate the direct and indirect fitness effects of intense cougar (Puma concolor) predation using 48 years of data on marked bighorn sheep (Ovis canadensis) on Ram Mountain, Alberta, Canada. We compared years of intense cougar predation with years with no or occasional cougar predation. We first quantified the effects of predation on neonatal, weaning, and overwinter lamb survival, three metrics potentially affected by direct and indirect effects. We then investigated the possible indirect effects of intense cougar predation on lamb production, female summer mass gain, and lamb mass at weaning. We found strong effects of cougar predation on lamb survival, lamb production, and seasonal mass gain of lambs and adult females. In years with high predation, neonatal, weaning, and overwinter lamb survival declined by 18.4%, 19.7% and 20.8%, respectively. Indirect effects included a 14.2% decline in lamb production. Female summer mass gain decreased by 15.6% and lamb mass at weaning declined by 8.0% in years of intense cougar predation. Our findings bring key insights on the impacts of predation on prey fitness by reporting moderate to large effects on recruitment and illustrate the importance of indirect effects of predation on population dynamics.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Environment and Parks

Alberta Conservation Association

Université de Sherbrooke

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3