Multiple‐dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery

Author:

Jiang Yingqiao1,Wang Yinhui1,Cheng Gang1,Li Yuehua1,Dai Lei1,Zhu Jing1,Meng Wei1,Xi Jingyu2,Wang Ling1,He Zhangxing1ORCID

Affiliation:

1. School of Chemical Engineering North China University of Science and Technology Tangshan China

2. Tsinghua Shenzhen International Graduate School, Institute of Materials Research Tsinghua University Shenzhen China

Abstract

AbstractThe scarcity of wettability, insufficient active sites, and low surface area of graphite felt (GF) have long been suppressing the performance of vanadium redox flow batteries (VRFBs). Herein, an ultra‐homogeneous multiple‐dimensioned defect, including nano‐scale etching and atomic‐scale N, O co‐doping, was used to modify GF by the molten salt system. NH4Cl and KClO3 were added simultaneously to the system to obtain porous N/O co‐doped electrode (GF/ON), where KClO3 was used to ultra‐homogeneously etch, and O‐functionalize electrode, and NH4Cl was used as N dopant, respectively. GF/ON presents better electrochemical catalysis for VO2+/VO2+ and V3+/V2+ reactions than only O‐functionalized electrodes (GF/O) and GF. The enhanced electrochemical properties are attributed to an increase in active sites, surface area, and wettability, as well as the synergistic effect of N and O, which is also supported by the density functional theory calculations. Further, the cell using GF/ON shows higher discharge capacity, energy efficiency, and stability for cycling performance than the pristine cell at 140 mA cm−2 for 200 cycles. Moreover, the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm−2. Such an ultra‐homogeneous etching with N and O co‐doping through “boiling” molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3