Affiliation:
1. Thermal Solution and Energy Technology Research and Development Laboratory (TSET R&D) Srinakharinwirot University Nakhon Nayok Thailand
2. Biofuel and Bioenergy Technology Research and Development Laboratory (BBT R&D), Department of Mechanical Engineering, Faculty of Engineering Srinakharinwirot University Nakhon Nayok Thailand
Abstract
AbstractThermoelectric cooling (TEC) reverses the electrical energy to temperature caused by the Peltier effect, where a temperature difference occurs between two conductors, that is, hot and cold junctions. This article presents the enhanced heat transfer of a TEC module using a TEC1‐12710 model integrated with a wavy channel heat sink using ferrofluid as a coolant under continuous and pulsating flows, where the differences in the distance of the magnetic field are considered. Square permanent magnets measuring 30 mm × 20 mm × 4 mm (width × length × height) are used to transmit a magnetic field to the heat sink and then tested under a magnetic distance of 10–30 mm. The test is performed at a water flow rate from 0.0083 to 0.028 kg/s and supplied with a constant TEC voltage of 12 V. By applying a magnetic field to the TEC module with a magnetic distance of 20 mm and a ferrofluid concentration ratio of 0.015%, the cooling efficiency increases by approximately 18.64%. Hence, using pulsating flow may improve thermal efficiency by approximately 23%. The results show an exponential increase in the cooling efficiency when both passive and active cooling techniques are used.
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献