Disparate home range dynamics reflect nutritional inadequacies on summer range for a large herbivore

Author:

Wagler Brittany L.1ORCID,Smiley Rachel A.1ORCID,Courtemanch Alyson B.2ORCID,Lutz Daryl3,McWhirter Doug2,Brimeyer Doug4,Hnilicka Patrick5,Monteith Kevin L.1

Affiliation:

1. Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, Haub School of the Environment and Natural Resources University of Wyoming Laramie Wyoming USA

2. Wyoming Game and Fish Department Jackson Wyoming USA

3. Wyoming Game and Fish Department Lander Wyoming USA

4. Wyoming Game and Fish Department Cheyenne Wyoming USA

5. US Fish and Wildlife Service Lander Wyoming USA

Abstract

AbstractThe spatial distribution of animals has consequences for nutrition, predator–prey dynamics, spread of diseases, and population dynamics in general. Animals must establish a home range to secure adequate resources to fuel their energy needs. Home ranges, therefore, are temporally and spatially dynamic, given the changing requirements of an animal and the availability of resources on the landscape. We used data from two populations of bighorn sheep with contrasting population dynamics following pneumonia epizootics and different habitat quality on their summer range to test the hypothesis that the distribution and size of home ranges are influenced by environmental conditions and reproductive status. We used a combination of data from 768 vegetation transects and remotely sensed metrics to index forage quality of consecutive biweekly home ranges for 27 bighorn sheep, June–August 2019–2021. There were population differences in home range dynamics that were consistent with resource limitations in the population declining in abundance. Animals in both populations increased the size of their home range through the summer in association with declining forage quality indexed by plant phenology. Furthermore, animals in the Whiskey Mountain population without offspring had home ranges more than twice the size of animals with offspring, whereas there were no differences in the home range size between animals with and without offspring in Jackson. We demonstrated that limitations young offspring impose on space use of a mother may have consequences for animals living where larger home ranges are needed to secure adequate resources—sheep on Whiskey Mountain had to travel 1000 m from escape terrain to access the same amount of biomass that the Jackson sheep could access directly adjacent to escape terrain. Forage quality and availability influence movement and space use. In the presence of disease, movement and space use may influence pathogen transmission and persistence. Thus, forage availability may play an indirect role in population dynamics in the presence of disease, which is another line of evidence for how environmental and nutritional conditions may influence population dynamics when coping with disease.

Funder

U.S. Bureau of Land Management

Wyoming Wildlife and Natural Resource Trust

Wyoming Game and Fish Department

Wild Sheep Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3