Temperature and soil moisture manipulation yields evidence of drought‐induced pollen limitation in bee‐pollinated squash

Author:

Gambel Jess1ORCID,Holway David A.1

Affiliation:

1. Division of Biological Sciences University of California at San Diego La Jolla California USA

Abstract

AbstractClimate change alters environmental conditions in ways that directly and indirectly affect plants. Flowering plants, for example, modify reproductive allocation in response to heat and drought stress, and such changes can in turn affect pollinator visitation and, ultimately, plant reproduction. Although the individual effects of warming and drought on plant reproductive allocation are well known, these factors may interact to influence reproduction. Here, we conducted a fully crossed temperature by irrigation manipulation in squash (Cucurbita pepo) to test how temperature and soil moisture variation affect pollinator‐mediated reproduction. To tease apart the direct and indirect effects of temperature and soil moisture, we compared hand‐pollinated plants to bee‐pollinated plants and restricted bee foraging (i.e., pollen transfer) to one experimental group per day. Temperature and soil‐moisture limitation acted independently of one another: warming decreased flower size and increased pollen production, whereas the effects of soil‐moisture limitation were uniformly inhibitory. While treatments did not change squash bee (Xenoglossa spp.) behavior, floral visitation by the honey bee (Apis mellifera) increased with temperature in male flowers and decreased with soil moisture in female flowers. Pollen deposition by bees was independent of plant soil moisture, yet reducing soil moisture increased pollen limitation. This result stemmed at least in part from the effects of soil‐moisture limitation on pollen viability; seed set declined with increasing deposition of fluorescent pigment (a proxy for pollen) from plants experiencing decreased soil moisture. These findings suggest that the transfer of lower‐quality pollen from plants experiencing soil‐moisture limitation led to drought‐induced pollen limitation. Similar effects may occur in a wide variety of flowering plant species as climate warming and drought increasingly impact animal‐pollinated systems.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3