A new optimized least‐square sparse channel estimation scheme for underwater acoustic communication

Author:

Kumar Anand1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering National Institute of Technology Jamshedpur Jamshedpur India

Abstract

SummaryIn underwater acoustic (UWA) communication, orthogonal frequency division multiplexing (OFDM) is a promising technology that is highly essential to get channel state information meant for channel estimation (CE). Nevertheless, higher complexity, slower convergence, and poor performance, which degrade the performance estimation, are the limitations of the traditional CE methodologies. Thus, by amalgamating the least square (LS)‐CE algorithm along with polynomial interpolated black widow optimization (PI‐BWO) model, an optimized least square sparse (OLSS) CE algorithm has been proposed to intend for a UWA‐OFDM communication system. Formerly, by utilizing the 2's complement shift left turbo encoding (2CSL‐TE) methodology, the input signal is encoded. After that, the modulated encoded signal is provided for inverse fast Fourier transform (IFFT) operations; subsequently, they are transferred over the UWA channel toward the receiver OFDM. By employing the OLSS methodology, the received OFDM signal's interference‐free region is utilized for sparse CE at the receiver. Regarding symbol error rate (SER), bit error rate (BER), mean square error (MSE), and peak signal‐to‐noise ratio (PSNR), the proposed model's experiential outcome is evaluated and analogized with the other prevailing methodologies. When analogized with the conventional models, the proposed estimation methodologies achieved better performance.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3